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Summary

Neurodegenerative diseases, the leading cause of morbidity and disability,

are gaining increased attention as they impose a considerable socioeco-

nomic impact, due in part to the ageing community. Neuronal damage is

a pathological hallmark of Alzheimer’s and Parkinson’s diseases, amy-

otrophic lateral sclerosis, Huntington’s disease, spinocerebellar ataxia and

multiple sclerosis, although such damage is also observed following neu-

rotropic viral infections, stroke, genetic white matter diseases and parane-

oplastic disorders. Despite the different aetiologies, for example,

infections, genetic mutations, trauma and protein aggregations, neuronal

damage is frequently associated with chronic activation of an innate

immune response in the CNS. The growing awareness that the immune

system is inextricably involved in shaping the brain during development

as well as mediating damage, but also regeneration and repair, has stimu-

lated therapeutic approaches to modulate the immune system in neurode-

generative diseases. Here, we review the current understanding of how

astrocytes and microglia, as well as neurons and oligodendrocytes, shape

the neuroimmune response during development, and how aberrant

responses that arise due to genetic or environmental triggers may predis-

pose the CNS to neurodegenerative diseases. We discuss the known inter-

actions between the peripheral immune system and the brain, and review

the current concepts on how immune cells enter and leave the CNS. A

better understanding of neuroimmune interactions during development

and disease will be key to further manipulating these responses and the

development of effective therapies to improve quality of life, and reduce

the impact of neuroinflammatory and degenerative diseases.

Keywords: immune response; inflammation; microbiome; neuroprotec-

tion; repair.

Introduction

The prevalence of neurodegenerative diseases highly

depends on the country surveyed, yet the most prevalent

disease globally is dementia, with an estimated incidence

of 9�33% worldwide1 (Table 1). The increase in the inci-

dence of dementia, as with many neurodegenerative dis-

eases, is in part due to the ageing population,2 as an

Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; APP, amyloid precursor protein; AQP4, aquaporin 4;
Ab, amyloid-beta; BBB, blood–brain barrier; BSCB, blood–spinal cord barrier; CNS, central nervous system; COX-2, cyclooxyge-
nase-2; CP, choroid plexus; CVD, cerebrovascular diseases; EV, extracellular vesicles; EVD, Ebola virus disease; FTD, frontotem-
poral dementia; GDNF, glial cell-derived neurotrophic factor; HD, Huntington’s disease; HIV, human immunodeficiency virus;
HSPs, heat-shock proteins; IFN-c, interferon gamma; MHC, major histocompatibility complex; MRI, magnetic resonance imag-
ing; MS, multiple sclerosis; NF, neurofilament light; NK, natural killer; PD, Parkinson’s disease; PET, positron emission tomog-
raphy; PNND, paraneoplastic neurological disorders; PrP, prion protein; ROS, reactive oxygen species; SMA, spinal muscular
atrophy; SPECT, single-photon emission computed tomography; TBI, traumatic brain injury; TDP-43, TAR DNA-binding pro-
tein 43 kD; TLRT, oll-like receptor; TNF-a, tumour necrosis factor alpha; TREM2, triggering receptor expressed on myeloid
cells 2; ZIKV, Zika virus; ZO-1, zonula occludens-1
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ageing brain, or one following peripheral infections or

other insults is ‘primed’ to render the central nervous sys-

tem (CNS) more susceptible to damage.3 Priming of

innate immune responses in the CNS may thus explain

the higher prevalence of epilepsy in developing countries4

where CNS infections5 with neurotropic viruses are more

frequent. The neurotropic virus Zika is a good example

of how such viral infections not only contribute to neu-

rodegenerative diseases in the elderly, but also have a

major impact during development.

Despite different aetiologies (Table 1), a common fea-

ture of neurodegenerative diseases is chronic activation of

innate immune cells within the CNS, and in other dis-

eases such as multiple sclerosis (MS), the influx of

peripheral immune cells across the blood–brain barrier

(BBB). Old notions on how cells traffic into the CNS,

despite an apparently immune-privileged environment,

have been challenged recently by the identification of

lymphatic drainage, as well as by detailed studies on

immune cell trafficking in the choroid plexus (CP).

Here, we review the recent advances in our understand-

ing of how immune responses in the CNS contribute to

susceptibility to neurodegenerative diseases, how immune

responses change with ageing, and how therapies can be

designed to augment reparative processes in the CNS.

Immune privilege and CNS barriers

The concept of immune privilege originated from Sir

Peter Medawar’s studies in the mid-20th century showing

that tissue grafts in the CNS were not rejected. It also

takes into account the presence of the BBB, revealed by

Paul Ehrlich’s studies in the late 1800s showing that

solutes and molecules were excluded from the brain.

However, it is now clear that entry of compounds into

the CNS occurs via capillary venules, while cell migration

occurs at the post-capillary venules and is controlled by

adhesion molecules, cytokines and chemokines.35

Anatomically, the CNS is separated by three barriers: the

BBB/blood–spinal cord barrier (BSCB); the blood–cere-
brospinal fluid barrier at the CP (Fig. 1); and the arach-

noid barrier. Differences in the structure of the BBB and

BSCB, as well as differences in the cranial and spinal

meninges, in white and grey matter, and other regional

differences may explain the differential susceptibility of

anatomical regions to neuroinflammmatory events. For

example, the BSCB has reduced levels of zonula occlu-

dens-1 (ZO-1), occludin, VE cadherin and P-gp, and

fewer pericytes than the BBB,36 indicating that the spinal

cord may well be more susceptible to inflammatory

insults than the brain. The presence of barriers originally

explained why CNS antigens in the brain were ignored by

the peripheral immune response. However, this dogma

has been challenged recently by the identification of the

glymphatic system37 and rediscovery of lymphatic vessels

in the dura mater38,39 that are crucial to clear waste prod-

ucts such as amyloid-beta (Ab) peptides and tissue debris

that accumulate during disease. Dysfunction of these bar-

riers is well known to occur in neuroinflammatory disor-

ders, including MS, Parkinson’s disease (PD), Alzheimer’s

disease (AD), stroke, epilepsy and traumatic brain injury

(TBI),40 and is associated with activated endothelial cells

that display an altered phenotype and a decrease in tight

junction proteins. These changes that are also observed

during ageing41 may explain the increase in susceptibility

to neuroinflammation and neurodegenerative disorders in

the elderly. As well as playing a protective role in neu-

romyelitis optica (NMO), the BBB is also a target of

immune responses where pathogenic autoantibodies to

aquaporin 4 (AQP4) damage astrocytes that otherwise

maintain BBB.

Innate immunity

Innate immunity is the first line of defense in infection,

but also plays a key role in tissue repair, clearance of

apoptotic cells and cellular debris, as well as in response

to tumours. While the key innate immune cells in the

CNS are microglia and astrocytes, macrophages, natural

killer (NK) cells and mast cells as well as oligodendrocytes

and neurons all contribute to innate immune responses

in the CNS. Pathogen-associated molecular patterns

(PAMPs) and damage-associated molecular patterns

(DAMPs) include misfolded and aggregated proteins as

in, for example, AD, amyotrophic lateral sclerosis (ALS),

Huntington’s disease (HD) and PD.42 Cellular receptors

that recognize PAMPS and DAMPs, such as endogenous

molecules, for example, heat-shock proteins (HSPs), viral

and bacterial antigens, and oxidized lipids, include the

Toll-like receptors (TLR), C-type lectins and oxidized

lipoprotein detectors and nuclear oligomerization

domain-like receptors (NLRs) that play a key role in the

inflammasome. That innate receptors, for example, trig-

gering receptor expressed on myeloid cells 2 (TREM2),

are key to aiding clearance of dying cells, myelin debris

and aggregated proteins may explain the association of a

rare variant in TREM2 with AD, ALS and PD.42

Microglia, the principal resident innate immune cells of

the CNS, have diverse functions. During development

they shape neural circuits by pruning synapses as well as

regulating cell death and elimination of waste products

during inflammation or CNS damage. Differential activa-

tion of microglia is often classified as being either classical

(M1) or alternative (M2), based on chemokine and cyto-

kine expression in vivo.43 Switching between these polar-

izations is vital for remyelination and is affected by

ageing, as shown by the use of parabiosis in mice.44

Microglia secrete pro-inflammatory as well as anti-inflam-

matory factors, which can either be beneficial or detri-

mental in neurodegenerative diseases,45 for example
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microglia depletion in a mouse model of AD reduced

neuronal loss without affecting Ab pathology.46 Micro-

glia-derived factors such as brain-derived neurotrophic

factor are important for learning and memory processes,

processes that can be affected by maternal inflammation

leading to disrupted behaviour and learning in later life.47

Microglia appear to have different transcriptomic profiles

dependent on the region of the brain, ageing,48 neu-

ropathological state45 and the microbiome.49

Monocytes are the blood-borne precursors to macro-

phages and dendritic cells, and play a key role in innate

immunity. While microglia, in contrast to other tissue-

resident macrophages, arise from yolk sac primitive

macrophages, their distinct roles in CNS disorders are

frequently hard to distinguish. The development of the

CCR2-red fluorescent protein knock-in mouse has

allowed researchers to better differentiate the infiltrating

monocytes/macrophages and resident microglia in experi-

mental diseases.50 In addition, the novel markers

TMEM119 and P2Y12 have also helped differentiate

microglia and macrophages,51 allowing the relative contri-

bution of these cells in neuroinflammatory diseases to be

examined.

Similar to the M1/M2 polarization of macrophages and

microglia, subpopulations of astrocytes have been

reported that produce pro-inflammmatory mediators

(A1) and immunoregulatory mediators (A2). The A1

astrocytes that secrete Il-1a, tumour necrosis factor alpha

(TNFa) and C1q are considered to be neuroinflamma-

tory, and damage neurons and oligodendrocytes in vitro

as well as inducing apoptosis, suppressing T helper cell

activation, proliferation and function of activated T-cells.

In contrast, A2 astrocytes are neuroprotective, promoting

neuronal growth, survival and synaptic repair.52 Astro-

cytes respond to a plethora of insults and are frequently

observed as hypertrophic in many neurodegenerative dis-

eases, including stroke, TBI, MS, ALS and viral infections

and other inflammatory conditions.52 A1 reactive astro-

cytes have been suggested as having toxic effects in ALS,

AD, MS, PD, HD, schizophrenia and ageing,52,53 whilst

synapse-promoting A2 astrocytes may be responsible for

unwanted synapses in epilepsy and neuropathic pain.54 As

well as the classical innate immune cells, i.e. microglia

and astrocytes, oligodendrocytes also contribute to innate

immune reactions, expressing receptors and producing

immunomodulatory cytokines and chemokines. During

CNS insults and disease, oligodendrocytes can aid protec-

tive and regenerative processes, but can also contribute to

neurodegeneration through poor production or repair of

myelin. Cross-talk between oligodendrocytes and micro-

glia is a key area of interest in many CNS diseases.55 NK

cells have long been considered as lymphocytes that kill

tumour cells and virally infected cells. However, recent

studies have identified regulatory roles in T-cell responses

and homeostasis. Dysfunction of these regulatory rolesT
ab
le

1.
(C

on
ti
n
u
ed
)

D
is
ea
se

(P
ro
p
o
se
d
)
A
et
io
lo
gy

In
n
at
e
im

m
u
n
e
re
sp
o
n
se

in
vo
lv
em

en
t

A
d
ap
ti
ve

im
m
u
n
e
re
sp
o
n
se

in
vo
lv
em

en
t

In
ci
d
en
ce

%

o
r
n
u
m
b
er
/

10
0
00
0

P
re
d
ic
te
d
ch
an
ge

in
p
re
va
le
n
ce

R
ef
er
en
ce
s

D
ep
re
ss
io
n

M
u
lt
if
ac
to
ri
al

e.
g.

ge
n
et
ic
s,

h
o
rm

o
n
al

M
ic
ro
gl
ia
l
ac
ti
va
ti
o
n
,
↑
cy
to
ki
n
es
,

↑c
h
em

o
ki
n
es

↑
T
-r
eg

ce
ll
s

3%
↑

21
,
22
,
31

Sc
h
iz
o
p
h
re
n
ia

M
u
lt
if
ac
to
ri
al

M
ic
ro
gl
ia
l
ac
ti
va
ti
o
n
,
↑R

O
S,

↑p
ro
-

in
fl
am

m
at
o
ry

cy
to
ki
n
es
,
↑c
h
em

o
ki
n
es
,

↑T
L
R
s,
↓N

K
ce
ll
s

N
o
t
re
p
o
rt
ed

18
�5

N
o
t
re
p
o
rt
ed

23
,
32
,
33

B
ip
o
la
r
d
is
o
rd
er

G
en
et
ic

an
d
en
vi
ro
n
m
en
ta
l
ri
sk

fa
ct
o
rs

M
ic
ro
gl
ia
l
ac
ti
va
ti
o
n
,
↑p

ro
-i
n
fl
am

m
at
o
ry

cy
to
ki
n
es
,
↑c
o
m
p
le
m
en
t,
↑T

N
F
-a

↑T
-c
el
l
ac
ti
va
ti
o
n

2�4
%

li
fe
ti
m
e

p
re
va
le
n
ce

D
eb
at
ed

24
,
25
,
34

A
D
,
A
lz
h
ei
m
er
’s
d
is
ea
se
;
A
L
S,

am
yo
tr
o
p
h
ic

la
te
ra
l
sc
le
ro
si
s;
A
P
P
,
am

yl
o
id
-b

p
re
cu
rs
o
r
p
ro
te
in
;
F
U
S,

fu
se
d
in

sa
rc
o
m
a;

H
D
,
H
u
n
ti
n
gt
o
n
’s
d
is
ea
se
;
H
IV
/A
ID

S,
h
u
m
an

im
m
u
n
o
d
efi
ci
en
cy

vi
ru
s/
ac
q
u
ir
ed

im
m
u
n
o
d
efi
ci
en
cy

sy
n
d
ro
m
e;

M
S,

m
u
lt
ip
le

sc
le
ro
si
s;

P
D
,
P
ar
ki
n
so
n
’s

d
is
ea
se
;
P
M
L
,
p
ro
gr
es
si
ve

m
u
lt
if
o
ca
l
le
u
co
en
ce
p
h
al
o
p
at
h
ie
s;

SM
A
,
sp
in
al

m
u
sc
u
la
r
at
ro
p
h
y;

SO
D
1,

su
p
er
o
xi
d
e
d
is
m
u
ta
se

1;

SM
N
,
su
rv
iv
al

o
f
m
o
to
r
n
eu
ro
n
p
ro
te
in
;
T
B
I,
tr
au
m
at
ic

b
ra
in

in
ju
ry
,
T
D
P
-4
3,

T
A
R
D
N
A
-b
in
d
in
g
p
ro
te
in

43
kD

a.

ª 2018 John Wiley & Sons Ltd, Immunology, 154, 204–219 207

Inflammation in CNS neurodegenerative diseases



has been linked to MS,56 and reduced levels of NK cells

have been found in depression.57 Mast cells mediate BBB

permeability and recruitment of immune cells into the

brain, sustaining CNS inflammation in a potentially detri-

mental manner.58 Recent studies show that mast cells

interact with the gut microbiota and gut permeability,

and may therefore influence many diseases in which the

gut microbiota is of importance, including MS, AD, ALS,

PD and epilepsy.59

The complement system is an ancient part of the

immune system, which protects from microbes, removes

debris and promotes cell survival. Recent studies have

highlighted further roles of the complement system,

including control of cellular reprogramming and intracel-

lular metabolic programming.60 These newly discovered

functions are still under investigation, and their meaning

could have important relevance for therapeutic targeting

as the complement system has been implicated in many

diseases, including AD, ALS, MS, PD, epilepsy, TBI,

schizophrenia and depression, predominantly through

driving inflammation.61 It is now emerging that the com-

plement system may form a link between innate and

adaptive immunity, aiding in stimulation and regulation

of lymphocytes, and antigen presentation.62

The classical image of innate immunity being strictly

non-specific has been confounded in recent times, with

emerging evidence of innate immunity having some mem-

ory capacity, mostly through epigenetic changes. Mono-

cytes, macrophages and NK cells have all been shown to

have enhanced responses to previously-encountered

insults, although less specific than adaptive immune

responses.63

Adaptive immunity

The role of adaptive immunity in neurodegenerative dis-

orders is supported by alterations in T- and B-cell subsets

and (auto)antibody levels in the blood, cerebrospinal

fluid (CSF) and brain tissues during disease (Fig. 2).

Whether the cell subsets have a detrimental role (i.e. Th1

or Th17), or anti-inflammatory role [i.e. Th 2 or regula-

tory cells (Tregs)] is based, for example, on cytokines and

chemokines profiles. The role of the adaptive immune

responses in neurological diseases is best illustrated by the

spectrum of autoimmune encephalopathy syndromes,

including the paraneoplastic neurological disorders

(PNND).64,65 In many of these disorders the use of IVIG

or removal of the tumour expressing the aberrant antigen

in PNND is frequently sufficient to treat these disorders.

Traditionally, MS has been characterized by the invasion

of the CNS by adaptive immune cells, i.e. T and B lym-

phocytes; however, the role of the adaptive immunity in

PD and ALS is gradually gaining interest, although in AD

the inflammation is primarily by CNS-resident microglia.

For example, in early PD, increased numbers of Th17

cells are observed in the blood, some of which recognize

a-synuclein,66 although whether these T-cells are patho-

genic is unclear. T- and B-cells are also present in the

CNS during X-ALD, and may represent a secondary phe-

nomenon as immunosuppressive therapies have little

(a) (b)
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Endothelial cell

Interneuron

Macrophage
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Fenestrated 
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Choroid plexus 
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parenchyma
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Figure 1. Blood–central nervous system (CNS) barriers. The blood–brain barrier (BBB) (a) and blood–spinal cord barrier (BSCB) (that resembles

the BBB, see text for details) limit potential immune cells (shown in the lumen of the blood vessel), antibodies and soluble factors entering the

CNS in health. Likewise, while the choroid plexus (CP) also limits cell migration, evidence suggests that regulatory T-cells enter the brain via the

CP (b) during health in order to ensure surveillance of the CNS (see text for details). CSF, cerebrospinal fluid.
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impact on the course of the disease. In mouse models of

ALS, lower numbers of Tregs are concomitant with motor

neuron death and shorter survival times, while transfer of

Tregs suppresses neuroinflammation and prolongs sur-

vival. In line with these findings, Tregs have been

reported to be dysfunctional in people with ALS,67

although the relevance for the disease progression has not

been examined. In an experimental model of AD T-cells

aid clearance of plaques in transgenic mice yet also drive

the pathology and cognitive impairments that can be rec-

tified using anti-CD3 or IL-2 treatment.68,69 That T-cells

are more likely to be beneficial in AD is supported by

studies showing that transplantation of splenocytes from

young mice improved spatial learning and memory in

amyloid precursor protein (APP)swe/PSENldE9 transgenic

mice.70 Whether aged T-cells in AD are pathogenic is

unknown; however, such protection in early life may be

due to haematopoietic stem cell proliferation known to

reduce with age,71 leading to a decrease in na€ıve and

memory B-cells, impaired antibody levels, number and

function72 of T-cells characterized by an inverted CD4+/

CD8+ ratio, and an accumulation of CD8+/CD28� cells.73

That the adaptive immune response plays a major role

in early MS is evidenced by the effectivity of anti-inflam-

matory therapies that modify the natural evolution of dis-

ease. Although widely-considered to be a T-cell-mediated

disease, CD20 therapy is surprisingly effective, indicating

a key role of B-cells in the disease. This is further sup-

ported by recent data indicating memory B-cells are

major targets for effective immunotherapy in relapsing–
remitting MS.74 However, approaches targeting the adap-

tive immune response are less effective when administered

to patients in the progressive phase of the disease,

indicating a less important role for B-cells in disease

progression.

In addition to the cellular involvement, the presence of

immunoglobulins, i.e. oligoclonal IgG in the CSF, is a

diagnostic marker in MS; however, it is still unclear

whether these antibodies are pathogenic, or merely arise

due to aberrant intrathecal B-cells activated by Epstein–
Barr virus infection. This issue remains controversial and

deserves further study. In contrast to the as yet unknown

role of antibodies in MS, the closely related disorder

NMO, once classified within the MS spectrum, is now

considered a separate entity as the identification of the

target antigen of the antibody was identified as the water

channel AQP4. That antibodies to AQP4 are pathogenic

has been demonstrated in animal models and also

in vitro, resulting in astrocyte damage.75

Microbiome

Emerging evidence indicates that the microbiome influ-

ences CNS function and that disturbances in the micro-

biota–gut–brain axis may play a key role in susceptibility

to, as well as augmenting, neuroinflammatory disorders

(Fig. 3). Systemic infections contribute to neurodegenera-

tive disorders76 by ‘priming’ innate immune cells in the

CNS, implying that priming may also occur following

release of microbiome bacteria, viruses, fungi and proto-

zoa, and their toxins and metabolic products. The com-

position of the gut microbiome is largely dictated by

early-life occurrences, such as caesarean section,77 breast-

feeding and the early use of antibiotics. During infancy to

adulthood, the microbiome is relatively stable, although

changes may occur in later life when neurodegenerative

diseases arise.78 That recent studies have linked functional

alterations in the gut microbiota to several neurodegener-

ative diseases, for example, ALS, AD, MS, PD, autism,

bipolar disorder, depression and schizophrenia,79–81 sug-

gests that such alterations may contribute to disease. In

AD and PD, exposure to gut bacterial infections is

associated with disease,82,83 and in AD and MS, fewer

anti-inflammatory gut bacteria and an increase in pro-

inflammatory gut bacteria are associated with disease.79

Furthermore, the gut microbiome from people with MS

were shown to induce experimental neurological disease

in mice,84 supporting the notion that some components

of the microbiome activate a pathogenic inflammatory

response. Conversely, some gut bacteria regulate immune

responses, raising the possibility that probiotic biothera-

pies or faecal microbiota transplants may be therapeutic

for a range of inflammatory diseases, including neurode-

generative diseases.85

Environmental triggers and lifestyle risk factors

Several neurodegenerative diseases are clearly genetic, for

example, spinal muscular atrophy (SMA), genetic white

matter disorders, HD, spinocerebellar ataxia and familial

forms of ALS. However, the age of onset, progression and

severity of disease are often influenced by environmental

factors and lifestyle risk factors, such as smoking.86 For

example, family members of people with ALS share the

same ‘causal’ genetic mutation, yet may develop disease

onset at considerably different ages, some with, and some

without, cognitive impairment.87 A recent study showed

an increased risk for ALS in areas with higher concentra-

tions of airborne pollutants,88 and many other environ-

mental factors have also been implicated. Such variation

is also seen in MS, of which where the incidence is influ-

enced by latitude and vitamin D.89 Identification of envi-

ronmental risk factors is highly reliant on large

epidemiological studies, which usually report only weak

associations between risk factors and disease. However,

many environmental and lifestyle factors increase the risk

of several neurodegenerative and neuroinflammatory dis-

eases (Table 2).

An emerging threat that is spreading rapidly in nearly

all countries on the American continents is the flavivirus
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Zika (ZIKV).100 The tropism of ZIKV has been reported

to be directed to neurons and neural stem cells, increas-

ing its risk in CNS disease development. Despite the

asymptomatic nature of ZIKV infection in adults, neuro-

logical complications have been reported in children,

including Guillain–Barr�e syndrome, myelitis, seizures and

meningoencephalitis.100 Another recent, yet more deadly,

virus is Ebola (EVD), with a mortality rate ranging up to

90%.101 The recent outbreak in 2014 has given insight

into its pathological mechanisms as it can cross the BBB

and affect the CNS during infection. Subsequently, EVD

has been reported to cause neurological symptoms such

as seizures and delirium, while on a neuropathological

level glial nodules, (chorio)meningoencephalitis, perivas-

cular cuffing and cerebral haemorrhages are found.101

Ageing

Ageing, a major risk factor in neurodegenerative diseases,

has a predominantly negative effect on both innate and

adaptive immune responses, reducing the efficacy of vac-

cinations, and increasing susceptibility to infectious,

chronic, autoimmune and neurodegenerative diseases.72

Ageing has been associated with a low-grade sterile

inflammatory status of the immune system, frequently

termed inflammaging,102 in which pro-inflammatory

cytokines (e.g. IL-6, TNF, IL-1b) are key players in

unhealthy ageing. Inflammaging might be the most

important aetiological factor in age-related neurodegener-

ative diseases, as ‘neuro-inflammaging’ is associated with

significantly decreased numbers of neurons, neuronal

arborization, spines and cortical volume.103 With ageing,

both macrophages and microglia display impaired and

prolonged activation to insults, reduced motility and

impaired phagocytosis.104 This over-activation induces

reactive oxygen species (ROS) production and attracts

peripheral leucocytes, which affects the metabolic and

trophic support glial cells provide their environment.105

Impaired phagocytosis results in increased toxic protein

accumulation, which is associated with progressive

pathology of Ab in AD and a-synuclein in PD.106 Fur-

thermore, the self-renewing capacity of glial cells drives

telomere shortening, which was found to contribute

towards AD pathology.107 While not yet fully investigated
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Figure 2. Immune responses in human and experimental inflammatory neurodegenerative disorders. B-cells (arrows) are observed in white (a)

and grey matter lesions (b) in multiple sclerosis (MS). (c) and (d) depict an MS leucocortical lesion. The white matter (WML) is associated with

HLA+ microglia (d, WML) in contrast to the lack of HLA+ microglia in the grey matter (d, GML). A similar pattern of HLA+ cells is seen in the

white and grey matter in an X-ALD case (e) and where peripheral macrophages infiltrate the white matter (f). Granulocytes (arrow) in suspected

vasculitis cases (g). Ageing influences the activity of microglia in a mouse model of MS: microglia in the central nervous system (CNS) of young

mice (h; Iba1 staining) are less active than in aged mice (i). In MS cases microglia in normal appearing white matter express P2Y12 (j) and

TMEM119 (k). In progressive multifocal leucoencephalopathy astrocytes (l, arrow) and activated microglia/macrophages (m, arrow) are highly

reactive in an area of demyelination. The paucity of astrocytic glial fibrillary acidic protein expression (red circle, n) is associated with an area of

microglial activation (red circle, o) in acute haemorrhagic leucoencephalitis.
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in other neurodegenerative diseases, this may be an

important factor that drives progressive neuropathology

with ageing. Ageing also affects one of the most impor-

tant regenerative processes in the brain, viz: remyelina-

tion. The efficiency of this process progressively declines

during ageing as a result of reduced signalling from

macrophages to regulate differentiation of oligodendro-

cyte precursor cells.108

Monitoring neuroinflammation

Although biomarkers of neuroinflammation are consid-

ered essential for monitoring disease diagnosis, progres-

sion and response to therapy, there is a lack of accurate

and reliable biomarkers for many neurological diseases.109

Many biomarkers present in blood or CSF are a conse-

quence of the CNS pathology, for example, cytokines and

Microbiota
Infection

Stress

C-section

Faecal
transplant

Antibiotics

Diet

Pollution

Gut Brain Axis

Figure 3. Proposed factors that influence the gut–brain axis in neuroinflammmatory disorders. Cross-talk (arrows) between the gut and brain

indicates that lifestyle and the environment influence brain function that feeds back to the gut brain axis. Altered gut microbiota composition as

a result of lifestyle, for example, poor diet, stress, infection and other environmental factors, enhances the risk of neuroinflammatory disorders.

During development maternal inflammation and caesarean section may influence brain development and microbiome of the fetus. Therapeutic

approaches using faecal transplants, controlled and restricted diet and probiotics may help establish a healthy microbiome and therefore improve

brain health.
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chemokines,109,110 loss of BBB integrity105 or indicators of

neuronal damage, such as the increased levels of neurofil-

ament111 or decreased N-acetyl-aspartate levels on

MRS.109 One such pathological marker, extracellular vesi-

cles (EVs), are released by neurons, oligodendrocytes,

astrocytes, microglia and epithelial cells, as well as by

immune cells that enter the brain during inflammation.112

In neurodegeneration, EVs are widely considered to act as

vehicles for the spread of aggregated pathogenic proteins.

The composition of EVs closely reflects the cell from

which they are derived. Upon entering the CSF or blood

they should therefore be considered as potential biomark-

ers of disease progression.

While blood and CSF are commonly used to monitor

biomarkers of neuroinflammation, in vivo imaging of the

CNS during disease has become a more widely accepted

approach due to its non- or minimally invasive nature.

Such techniques include magnetic resonance imaging

(MRI), positron emission tomography (PET), single-

photon emission computed tomography (SPECT) and

optical imaging.113 In this way, neuroinflammation can

be studied by: (i) monitoring activation of resident CNS

immune cells, for example, microglia activation; (ii) BBB

permeability, for example, upregulation of adhesion mole-

cules; (iii) CNS infiltration of immune cells; and (iv)

pathology as a result of neuroinflammation, for example,

demyelination and cell death (Table 3). For example,

imaging of resident immune cells is frequently performed

using PET to examine the translocator protein 18 kDa

(TSPO) as an indicator of neuroinflammation in

stroke,119 AD,120 MS121 and epilepsy.122

In addition, BBB permeability, regarded as the hallmark

of neuroinflammation, is imaged by leakage of gadolin-

ium using MRI, or by nuclear imaging of P-glycoprotein

and vascular cell adhesion molecule (VCAM-1), which

are differentially expressed in MS,123 stroke,124 AD and

vascular dementia.125

Indicators of leucocyte function include markers of

oxidative stress, such as pro-inflammatory and oxidative

enzymes secreted by activated monocytes and neutrophils.

One such product is myeloperoxidase (MPO) that can be

detected by gadolinium (Gd) (MPO-Gd) to track the

oxidative activity of MPO non-invasively. Thus, MPO has

been used as a potential biomarker of neuroinflammation

in experimental models of MS, namely experimental

autoimmune encephalomyelitis126 and experimental

stroke.127

Cell-labelling approaches include radiolabelled antibod-

ies and radiolabelled cytokines, which are imaged using

SPECT, PET or optical imaging. Radiolabelling of

Table 2. Environmental and lifestyle risk factors in neuroinflammmatory diseases

Risk factor Potential mechanisms Disease References

Viral infections ↑pro-inflammatory cytokines, chemokines,

↑macrophages, ↑NK cells

↑ALS, ↑MS, ↑stroke, ↑autism1,

↑schizophrenia1, ↑bipolar
disorder1

91, 93–96, 98, 99

Bacterial infections ↑neutrophils, ↑complement, ↑pro-
inflammatory cytokines

↑MS, ↑stroke, ↑schizophrenia1,
↑bipolar disorder1

94, 95, 98, 99

Fungal infections ↑neutrophils, ↑pro-inflammatory cytokines,

chemokines, ↑macrophages

↑MS, ↑ALS, ↑AD, ↑stroke 87, 92, 94, 95

Pollution ↑ROS, microglial activation, BBB changes,

↑pro-inflammatory cytokines, infiltrating

monocytes, astrogliosis

↑stroke, ↑AD, ↑PD, ↑MS, ↑ALS,
↑autism1

90, 91, 96

Metals exposure Neurotoxicity and metal aggregates, ↑ROS ↑ALS, ↑PD, ↑autism1 91, 92, 96

Pesticides Neurotoxicity, ↑ROS, BBB changes, UPS

inhibition, defective autophagy, ER stress,

mitochondrial dysfunction

↑ALS, ↑PD, ↑AD 91, 92

Moderate alcohol consumption ↑pro-inflammatory cytokines, ↑ROS,

↑chemokines, astrogliosis

↓ALS, ↓AD, ↓PD, ↓MS, ↑stroke,
↑depression, ↑bipolar disorder

91–93, 95, 97, 99

Smoking ↑ROS, neurotoxicity, ↑pro-inflammatory

cytokines

↑ALS, ↓PD, ↑AD, ↑MS, ↑stroke,
↑autism1 (debated), ↑depression,
↑bipolar disorder1

88, 90, 91, 93–95, 97

Regular exercise ↑monocytes, ↑neutrophils, ↑NK cells ↑ALS, ↓AD, ↓PD, ↓depression 91, 92, 97

Obesity ↑macrophages, ↑pro-inflammatory

cytokines, ER stress

↑ALS, ↑PD, ↑AD, ↑MS, ↑stroke,
↑depression

91, 92, 93, 95, 97

Head injury ↑neutrophils, ↑complement, ↑pro-
inflammatory cytokines and chemokines,

T-cell migration

↑ALS, ↑PD, ↑AD, ↑MS, ↑bipolar
disorder

91–93, 99

1Prenatal exposure.
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Table 3. Biomarkers and imaging of neuroinflammatory diseases

Target type Target Marker Methods References

Resident CNS cells Translocator protein Innate immune activation PET, SPECT 109

Monoamine oxidase-b Reactive astrocytes PET 109

Cyclooxygenase 1 Activated microglia and astrocytes PET 109

Myeloperoxidase Inflammatory mediator found in

leucocytes

MRI, PET 114

Adenosine receptors Cell injury PET 115

a4b2 nicotinic acetylcholine

receptors

Activated microglia and astrocytes PET 109

Myo-inositol Astrocyte hypertrophy MRS 109

N-acetyl-aspartate Neuronal integrity MRS 109

Iron accumulation Free radical formation, mitochondrial or

neuronal dysfunction

MRI 116

Myelin Demyelination and loss of myelin integrity

in white matter disorders

PET 109

BBB integrity Vascular cell adhesion molecule 1 Activation BBB Molecular imaging 109

P-glycoprotein Alterations of expression in relation to BBB

activity

PET, optical imaging 109

Immune markers Cytokines Pro- or anti-inflammatory signals CSF 110

Chemokines Pro- or anti-inflammatory signals CSF 110

Superparamagnetic particles of iron

oxide (SPIO)

SPIO-labelled phagocytic cells MRI 117

Antibodies Oligoclonal bands IgG of unknown specificity CSF 111

Anti-aquaporin 4 antibodies Antibodies to aquaporin 4 (water channel

protein)

Blood 111

Anti-NF antibodies Neuronal damage Blood 111

Free proteins Neurofilaments Neuronal damage CSF 111

MicroRNAs Circulating microRNAs involved in

inflammation

Blood 111

b-amyloid Proteins involved in disease pathology Blood 118

Tau Proteins involved in disease pathology Blood 112

Annexin V Apoptosis PET, SPECT, blood 109

Exosomes A potential mechanism by which pathology

is spread and/or toxic proteins are

transported

CSF/blood 112

Figure 4. Mechanisms of damage and therapeutic control of inflammation in neurodegenerative diseases. (1) In the central nervous system

(CNS), damage to neurons or genetic mutations leads to accumulation of misfolded and aggregated proteins characteristic of many neurodegen-

erative diseases. Such damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) activate microglia

and astrocytes to release pro-inflammatory factors. Likewise, stressed neurons and glia release heat-shock proteins (HSPs) in an effort to counter

the formation of aggregated proteins. Some HSPs, for example, HSPB5, induce regulatory microglia and astrocyte phenotypes. Neuronal specific

antibodies (2) activate the complement system or induce Fc receptor (FcR)-mediated damage. (3) Natural killer (NK) and T-cells damage neu-

rons via MHC class-I, CD8+ T-cells or non-classical MHC molecules. (4) Excessive production of glutamate together with reduced glutamate

uptake by astrocytes leads to excitotoxic damage of neurons. (5) Macrophage/microglia activation triggers reactive oxygen (ROS) and nitrogen

(NOS) species, MMPs, chemokines and cytokines known to damage axons and neurons. (6) B-cells secrete pathogenic antibodies and toxic fac-

tors that damage axons and oligodendrocytes. Therapeutic approaches to control neuroinflammation include (A) anti-CD20 antibodies to deplete

B-cells that play multiple roles in immune-mediated neurodegeneration (see text for details). (B) IVIG and plasmapheresis block pathogenic anti-

bodies, including those triggered by tumours as in paraneoplastic disorders. (C) Complement inhibitors control activity of complement, while

(D) antioxidants and (E) calorie restriction reduce ROS and NO levels that contribute to neurodegeneration. (F) In multiple sclerosis (MS), inhi-

bition of T- and B-cells entry across the blood–brain barrier (BBB) into the CNS, for example, (G) Natalizumab (Tysabri�), or immune therapies

that deplete T- and B-cells [Alemtuzumab (Lemtrada�), or alter their function Glatiramer acetate (Copaxone�)] in the periphery, or (H) block

immune cell trafficking from the lymph nodes (FTY720, S1PR-agonists) controls neuroinflammation in the CNS.
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anti-CD3, anti-CD4, IL-1 and IL-2 have all been used to

visualize T-lymphocytes in MS128 and rheumatoid arthri-

tis.129 As well as ongoing neuroinflammation, several

approaches image the resultant pathology. As an example,

PET ligands have been used to visualize myelin damage

in MS,130,131 while many approaches are used to visualize

cell death, for example, neuronal loss, such as annexin-V,

caspases and ML-10.113 Imaging of neuro-inflammatory

biomarkers is an expanding topic with the potential to

expedite diagnosis, and improve disease and therapeutic

monitoring. Unfortunately, while many approaches are

examined in preclinical models, fewer are available for

studies in humans.109

Immune therapies

The accumulating evidence supporting the notion that

inflammation plays a key role in neurodegenerative dis-

eases of the CNS has stimulated an increasing number

of immunotherapeutic strategies to modulate

Table 4. Immune therapies in neuroinflammatory disorders

Therapeutic intervention Proposed mode of action Disease References

Antibodies to abnormal protein

aggregations e.g. a-synuclein, PrP

Clearance of aggregates AD, prion diseases, HD, ALS,

stroke, PND

132–135

Plasmapheresis (+tumour removal) Removal of pathogenic antibody Paraneoplastic disorders 136

Stem cell therapy Creating non-pathogenic and

reparative cell populations

MS, SMA, ALS, TBI, AD, PD, prion

diseases, stroke, HD

137–144

Antibiotics e.g. minocycline Inhibition of inflammation and

anti-apoptotic activity

AD, ischaemia, PD, HD, MS 145,146

Cannabinoids Attenuates excitotoxic glutamatergic

neurotransmission, modulation of

microglia and astrocytes

AD, PD, HD, ALS, epilepsy, MS,

autism

133, 147–149

Non-steroidal anti-inflammatory Inhibition of COX-1 and -2 AD 132

Diet and calorie restriction Antioxidant functions, inhibits

COX-2 and iNOS, reduction in

free radicals and oxidative stress

Epilepsy, ALS, AD, PD 150–153

Anti-lymphocyte therapy B-cell depletion (CD20)

Plasma cells depletion (CD19)

Blocking T-cell responses

Modulating T-cell phenotypes

MS, stroke, depression 135, 137, 154

Innate immunity based therapy Macrophage apoptosis and

macrophage suppression.

inhibition NLRP inflammasome

inhibiting/modulating microglia

phenotypes.

MS, depression, ischaemia, TBI 137, 141, 154

Targeting ionotropic and

metabotropic receptors

Agonist/antagonist antibodies or

ligands e.g. NMDA, glutamate

receptor antagonist

AD, PD, HD, MS, SMA, ALS, prion

disease, epilepsy, bipolar disorder,

TBI, depression, schizophrenia

132–134, 137, 138,

141, 154–158

Antioxidants Reducing ROS, upregulating

antioxidant genes. Targeting Nrf2

pathway (e.g. BG12). HSPs.

MS, HD, ALS, stroke, TBI,

schizophrenia, depression

Friedreich’s ataxia

134, 135, 137, 141,

154, 158, 159

RAGE antagonists Reduction of formation or

activation of innate immune

responses by blocking/inhibiting

advanced glycation end-products

(AGEs)

AD 160

Complement inhibition Blocking complement mediated

neuronal damage

Stroke, TBI, epilepsy 161–163

Potassium and sodium channel

targets

Neuroprotection e.g. lamotrigine,

fampridine acid-sensing ion

channel 1 (ASIC1)

MS 137

Chemokine/cytokine modulation Promoting regenerative

microenvironment e.g. IL-4, CD28,

amplification of Tregs.

CXCR3

AD, TBI, epilepsy, depression,

schizophrenia, bipolar disorder

132, 141, 154, 157, 158, 164

ª 2018 John Wiley & Sons Ltd, Immunology, 154, 204–219 215

Inflammation in CNS neurodegenerative diseases



neuroinflammatory diseases (Fig. 4; Table 4). Many of

these approaches that have been examined in MS may

also be effective in other neurodegenerative diseases, as

shown with Gilenya (FTY720, S1P-R agonist) for experi-

mental PD.165 Some approaches, such as gene silenc-

ing,166,167 target a specific aggregated protein, while

immune-based therapies including plasmapheresis or

IVIG are specific for antibody-mediated disorders. How-

ever, other approaches, including antioxidant com-

pounds, ion channel blocks, and approaches promoting

neuroprotection and regeneration, such as haematopoi-

etic stem cell transplantation and modified stem cells,

are now being exploited in neurodegenerative disorders

such as cerebral adrenoleucodystrophy.168 Other

approaches for modulating aberrant innate and adaptive

immune cells are also under investigation, including the

use of exogenous HSPs. As an example, HSPB5 exerts

neuroprotective effects in several models of neurodegen-

eration as well in MS.169

Conclusions

That the nervous and immune systems are inextricably

interlinked is reinforced by recent studies revealing menin-

geal vessels that directly link the brain with the lymphatic

system. In many neurodegenerative diseases the innate

immune response in the CNS plays a key role in the onset

and progression of disease, but is equally important for res-

olution of inflammation. During development microglia

aid in synaptic pruning and neurophagy,53 which is impor-

tant for neuronal development. Even at this early stage,

environmental factors including maternal infections or

alcohol intake influence microglial responses in later life.

Similarly, adaptive and innate immune cells that enter the

CNS trigger damage but are crucial for immune regulation.

As well as the well-recognized roles of microglia, astrocytes

and neurons, oligodendrocytes also contribute to immune

surveillance and regulation in the CNS.

Thus, despite beneficial roles of immune responses,

such responses must remain under tight control to pre-

vent CNS damage. During ageing and repeated activation,

immune cells undergo senescence, implying that the CNS

is not fully protected. The factors that drive chronic

inflammation include misfolded and aggregated proteins,

HSPs and other DAMPs that trigger local innate

responses. Infectious agents also play a role, including

those arising from the gut microbiome and toxic com-

pounds in the environment. Gene silencing to prevent

protein aggregation is effective in experimental settings,

and it is encouraging that studies in humans are now

underway. Thus, development of novel therapeutic

approaches to target the pathogenic mechanisms leading

to detrimental inflammation, as well as harnessing

endogenous protective pathways, will be key to control-

ling neuroinflammatory diseases.
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